The First X-Ray Crystal Structures of the Platinum(II)-in and -out Complexes with Dioxocyclams

Eiichi Kimura,** Sachiko Korenari,* Mitsuhiko Shionoya,* and Motoo Shiro*b

^a Department of Medicinal Chemistry, Hiroshima University School of Medicine, Kasumi 1-2-3, Minami-ku, Hiroshima 734, Japan

^b Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

X-Ray studies of the two macrocyclic tetra-amine complexes $[Pt(H_2L')]^0$. $5H_2O(3b)$ and $[PtLCl_2]^0$. $2H_2O(4a)$, where L = dioxocyclam and L' = 6-methyldioxocyclam, show the first platinum(1)-in and -out structures, respectively.

Among the well-documented square-planer PtII-tetra-amine $(e.g., 4NH_3, 2en, etc.)$ complexes,¹ the complex with cyclam (1,4,8,11-tetra-azacyclotetradecane) (1) remains unknown. This is quite puzzling in view of the fact that the size (effective ionic radii of four-co-ordinate, square-planer MII ion)2 of PtII (74 pm) is similar to those of Cu^{II} (71 pm),^{3a} Ni^{II} (63 pm),^{3b} or PdII (78 pm),^{3c} all of which comfortably stay in the cyclam N_4 The recent finding⁴ dioxocyclam cavity. that (5,7-dioxo-1,4,8,11-tetra-azacyclotetradecane) (2a) with the same 14- membered N₄ ring can form a stable complex $[Pt^{II}(H_{-2}L)]^0$ (3a), where $H_{-2}L$ denotes doubly deprotonated (2a), was therefore significant. The dioxocyclam (2) was designed as a hybrid ligand of oligopeptides and cyclam.⁵ A lipophilic dioxocylam (2) ($R = C_{16}H_{33}$) was proved to be a selective Pt^{II}-sequesting agent.⁴ Since this is the first reported Pt^{II} macrocyclic N₄ complex, we wished to monitor the stereochemical features of the 14-membered macrocyclic N₄ environment around Pt^{II}.

A good crystalline dioxocyclam complex (**3b**) [$\nu_{C=O}$ 1580 cm⁻¹, λ_{max} 245 nm (ϵ 9000)] was isolated from derivatized dioxocyclam (5,7-dioxo-6-methyl-1,4,8,11-tetra-azacyclotetradecane) (**2b**)⁶ and K₂PtCl₄ (1:1) in pH 6 (final pH)

nonbuffered aqueous solution at room temperature, and its X-ray structure analysis was undertaken.[†]

The structure of (3b) is shown in Figure 1. The Pt atom sits in a square-planar array of four nitrogens, as previously assigned (3b). This also represents the first X-ray structure of the dioxocyclam complexes $[M^{II}(H_{-2}L)^{0.5}]$ The co-ordinate bond lengths Pt^{IL}-N⁻ (average 1.98 Å) and Pt^{IL}-NH (average 2.05 Å) are close to those of the Pt^{IL}-dipeptide (Gly-Met) complex, which has Pt^{IL}-N⁻ (1.98 Å) and Pt^{II}-NH₂ (2.07 Å).⁸ Five H₂O molecules provide hydrogen bondings with macrocyclic carbonyl oxygens and amines, but do not interact with Pt^{II}. The macrocyclic co-ordinate geometry is nothing unusual, with little by way of constraints seen around Pt^{II}. Taken together with similar bond parameters for Cu^{II}-, ^{3a} Ni^{II}-, ^{3b} and Pd^{IL}-cyclam complexes, ^{3c} the present result suggests that the hypothetical square-planar Pt^{II}-cyclam complex (1) is stereochemically feasible.

Since the deprotonated amide nitrogen has been shown to stabilize high oxidation states of metals (e.g., Cu^{3+} , Ni^{3+})^{5c,9}

Crystal data for (4a): $C_{10}H_{20}N_4O_2Cl_2Pt.2H_2O$, M = 530.3, triclinic, space group P1, a = 8.974(2), b = 13.052(3), c = 8.532(2) Å, $\alpha = 92.99(3)$, $\beta = 116.38(2)$, $\gamma = 103.52(2)^{\circ}$, U = 839.1(4) Å³, Z = 2, $D_c = 2.099$ g cm⁻³. Intensities of 2497 unique reflections in the region of 20 $< 120^{\circ}$ were measured on a Rigaku AFC-5 diffractometer using $Cu-K_{\alpha}$ radiation, and corrected for absorption effects by use of North's method.¹² The structure was solved by the heavy-atom method and refined by a block-diagonal least-squares technique to R and $R_w = 0.056$ and 0.074, respectively, for 2412 observed reflections with $|F_o| > 3\sigma$ (F_o). Atomic co-ordinates, bond lengths and angles, and thermal parameters for (**3b**) and (**4a**) have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 1. The structure of $[Pt(H_{-2}L')]^0$ (L' = 2b). Important bond lengths (Å) and bond angles (°) are as follows; Pt-N(1) 2.06(1), Pt-N(4) 1.98 (1), Pt-N(8) 1.98(1), Pt-N(11) 2.05(1), N(4)-C(5) 1.30(2), C(5)-O(15) 1.27(2), C(7)-N(8) 1.31(2), C(7)-O(16) 1.27(2); N(1)-Pt-N(4) 83.9(5), N(4)-Pt-N(8) 95.2(5), N(8)-Pt-N(11) 83.8(5), N(1)-Pt-N(11) 97.1(4), N(1)-Pt-N(8) 178.8(5), N(4)-Pt-N(11) 178.9(5), N(4)-C(5)-O(15) 123.7(12), N(8)-C(7)-O(16) 122.3(13).

Figure 2. The structure of $[PtLCl_2]^0$ (L = 2a). Important bond lengths (Å) and bond angles (°) are as follows; Pt–Cl(1) 2.316(3), Pt–Cl(2) 2.310(2), Pt–N(1) 2.051(7), Pt–N(11) 2.058(8), N(4)–C(5) 1.31(1), C(5)–O(15) 1.23(1), C(7)–N(8) 1.33(1), C(7)–O(16) 1.20(1); Cl(1)–Pt–Cl(2) 91.3(1), Cl(1)–Pt–N(1) 87.0(2), Cl(2)–Pt–N(11) 86.3(2), N(1)–Pt–N(11) 95.3(3), Cl(1)–Pt–N(11) 177.4(2), Cl(2)–Pt–N(1) 177.1(2), N(4)–C(5)–O(15) 123.9(10), N(8)–C(7)–O(16) 123.7(10).

and, moreover, it is a much stronger σ -donor than cyanide ion,¹⁰ oxidation of (3) or the relevant oxopolyamine complexes^{8b} might provide a new type of one-dimensional complex with Pt-Pt bonds, by analogy with $[Pt(CN)_4]^{2-.11}$

From a mixture of free dioxocyclam (2a) and $K_2Pt^{II}Cl_4$ (1:1) kept in pH 7 (starting pH) nonbuffered aqueous solution for 6 h, we have isolated yellow crystals (4a) (minor) in addition to the colourless crystals (3a) (major), which were separated by hand picking. The structure of (4a) [$v_{C=0}$ 1660 cm⁻¹, λ_{max} 272 nm (ϵ 200)] has been established by an X-ray study.

[†] Crystal data for (**3b**): C₁₁H₂₂N₄O₂Pt.5H₂O, M = 527.5, monoclinic, space group Cc, a = 19.873(3), b = 5.906(1), c = 17.717(4) Å, $\beta = 117.30(1)^\circ$, U = 1847.9(7) Å³, Z = 4, $D_c = 1.895$ g cm⁻³. Intensities of 1563 unique reflections in the region of $20 < 130^\circ$ were measured on a Rigaku AFC-5 diffractometer using Cu-K_α radiation, and used with absorption corrections for spherical crystals ($\mu R = 1.5$).⁷ The structure was solved by the heavy-atom method and refined by a block-diagonal least-squares technique to R and $R_w = 0.043$ and 0.057, respectively, for 1537 observed reflections with $|F_o| > 3\sigma$ (F_o).

The structure of (4a) is shown in Figure 2, which clearly demonstrates the dioxocyclam serving as a bidentate ligand. The bond length Pt^{II}–NH (average 2.06 Å) here is almost the same as that for the platinum-in complex (3b). The Pt^{II}–Cl bond distance (2.31 Å) is similar to that (2.33 Å) found previously in *cis*-[Pt^{II}(NH₃)₂Cl₂].¹³ The platinum-out complex (4a) upon dissolution in phosphate buffer solution (pH = 7) gradually ($\tau_{1/2} = 6$ h) turned to the platinum-in species (3a), which was monitored by silica gel thin-layer chromatography (Kieselgel 60 F₂₅₄, eluent: MeOH) or h.p.l.c. on a weak cation-exchange column (eluent; 0.10 m KH₂PO₄ aq. solution, detection by u.v. at 243 nm). A study of the anticancer activity of (4a) is in progress.

We thank Ministry of Education for financial assistance by Grant-in-Aids for Special Project Research (No. 61125006) and for Scientific Research on the Priority Area of 'Macromolecular Complexes' (No. 62612508).

Received, 7th March 1988; Com. 8/00897C

References

- (a) J. J. Pesek and W. R. Mason, J. Magn. Reson., 1977, 25, 519;
 (b) K. Wieghardt and M. Koppen, J. Chem. Soc., Dalton Trans., 1983, 1869.
- 2 R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751.
- 3 (a) P. A. Tasker and L. Sklar, Cryst. Mol. Struct., 1975, 5, 329; (b)
 B. Bosnich, R. Mason, P. J. Pauling, G. B. Robertson, and M. L. Tobe, Chem. Commun., 1965, 97. (c) M. Yamashita, H. Ito, K.

Toriumi, and T. Ito, *Inorg. Chem.*, 1983, **22**, 1566; K. Toriumi, M. Yamashita, H. Ito, and T. Ito, *Acta Crystallogr.*, 1986, **42**, 963.

- 4 E. Kimura, Y. Lin, R. Machida, and H. Zenda, J. Chem. Soc., Chem. Commun., 1986, 1020.
- 5 (a) For a review: E. Kimura, J. Coord. Chem., 1986, 15, 1; (b) for Cu^{II} complex: M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1979, 325; (c) for Ni^{II} complex: M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans., 1979, 694; (d) for Co^{II} complex: K. Ishizu, J. Hirai, M. Kodama, and E. Kimura, Chem. Lett., 1979, 1045.
- 6 I. Tabushi, Y. Taniguchi, and H. Kato, *Tetrahedron Lett.*, 1977, 1049.
- 7 'International Tables for X-ray Crystallography,' vol. II, Kynoch Press, Birmingham, 1959, p. 291.
- 8 H. C. Freeman and M. L. Golomb, J. Chem. Soc., Chem. Commun., 1970, 1523.
- 9 (a) E. Kimura, A. Sakonaka, and R. Machida, J. Am. Chem. Soc., 1982, 104, 4255; (b) E. Kimura, T. Koike, R. Machida, R. Nagai, and M. Kodama, *Inorg. Chem.*, 1984, 23, 4181; (c) L. Fabbrizzi, A. Perotti, and A. Poggi, *Inorg. Chem.*, 1983, 22, 1411.
- 10 G. E. Kirvan and D. W. Margerum, Inorg. Chem., 1985, 24, 3017.
- (a) 'Chemistry and Physics of One-Dimensional Metals,' ed. H. J. Keller, Plenum, New York, 1977; (b) G. D. Stucky, A. J. Schultz, and J. M. Williams, Ann. Rev. Mater. Sci., 1977, 7, 301; (c) M.-H. Whangbo and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 6093, and refs therein; (d) M. Tanaka and I. Tsujikawa, Bull. Chem. Soc. Jpn., 1986, 59, 2773; M. Tanaka, N. Kojima, Y. Ajiro, T. Ban, and I. Tsujikawa, Synth. Met., 1987, 19, 969 and refs. therein.
- 12 A. C. T. North, D. C. Phillips, and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.
- 13 C. H. Milburn and M. R. Truter, J. Chem. Soc. (A), 1966, 1609.